Abstract:
The objective of this study is to design an inventory management system for motorcycle parts manufacturing in order to control inventory of raw material, forecast demand and schedule production planning. The system includes storage for inventory, an indicator for monitoring the motorcycle parts and reporting the level of current inventory of the items. The integrated information on the status of inventory is used to decide whether an order for the inventory should be made. This system helps to keep track the flow of products and supplies faster and reduce the total inventory cost.

Keywords: motorcycle parts inventory, inventory management, inventory system, production planning
1. INTRODUCTION

There is a high competition in small and medium enterprises in Thailand. Production planning and control are important tools to optimize utilization of capacity, time and cost of production. A case study of motorcycle part manufacturer has sufficient labor, machine, experience and skill, but lack of efficient management system causing production efficiency is not high. Make-to-stock production has been applied due to entrepreneur’s experience including raw material ordering and production schedule. There is not an inventory management system which provides inventory record and status to integrate all information in order to make a good decision for the entrepreneur.

This research is aimed to design the inventory management system to record inventory, present inventory status and inventory shortage warning, including forecasting raw material input. The inventory management system design is developed to be easy use and appropriate for motorcycle part manufacturer. All inventory records have been applied to forecast raw material input, implement the inventory management system, determine raw material reorder point and production schedule, and estimate cost for each product.

2. PROBLEM ANALYSIS

The motorcycle part manufacturer has more than 774 products. The main raw material is aluminum which has at least 110 types. Product characteristic is anodized aluminum as figure 1.

Figure 1: Anodized aluminum

Source: A case study of motorcycle part manufacturer

There are more than 945,000 pieces of work in process (WIP) inventory. Product cost has never been calculated. Make-to-stock production is based on entrepreneur’s decision. Product groups can be categorized by demand as figure 2.

Figure 2: Product groups’ demand

Source: A case study of motorcycle part manufacturer

There are 42 CNC machines which are 14 CNC turning machines with feeding, 13 CNC turning machines, 15 CNC milling machines, 10 drilling machines, and 3 cutting machines with layout as figure 3.
Figure 3: Machines layout

Source: A case study of motorcycle part manufacturer

Production process from raw material to finish goods is as figure 4.

Figure 4: Production process

Source: A case study of motorcycle part manufacturer
3. THE INVENTORY MANAGEMENT SYSTEM DESIGN

The inventory management system model is as figure 5.

Figure 5: The inventory management system model

Source: A case study of motorcycle part manufacturer

Raw material inventory and non-anodized products inventory should provide stock status, reorder point, safety stock, economic production quantity (EPQ), and economic order quantity (EOQ) which can be accessed via computer network in the motorcycle part manufacturer. When customer order arrives, types and quantities of required products will be converted to types and quantities of required raw material to fulfill customer order and satisfy safety stock. Production time will be estimated to schedule production planning. The designed inventory management system has been developed in 3 Excel files.

3.1. Raw material

Capability: Presenting, warning, and forecasting inventory of raw material status.

Input: Quantities and date of receiving and using raw material (in and out).

Output: Balance, safety stock, EOQ, and monthly forecasting of raw material.

There are 3 spread sheets in this file which are AddmatData sheet, Balance Mat sheet, and Kg Mat Data sheet.

AddmatData sheet

AddmatData sheet is used to record quantities and date of receiving and using raw material as figure 6.
Figure 6: AddmatData sheet

Balance Mat sheet

Balance Mat sheet presents balance of raw material as figure 7.

Figure 7: Balance Mat sheet

Kg Mat Data sheet

Kg Mat Data sheet presents forecasting of raw material as figure 8.
3.2 Work in process inventory

Capability: Presenting, warning, and forecasting inventory of non-anodized products status.

Input: Quantities and date of receiving and using non-anodized products (in and out).

Output: Work in process balance, reproduction point, safety stock, and economic production quantity of non-anodized products.

Work in process inventory file will present reproduction point, safety stock, and economic production quantity of non-anodized products as figure 9.

3.3 Production input

Capability: Determining production schedule and summarizing required raw material and required production time.

Input: Quantities of required products and production schedule.

Output: Required products, required production time, total usage of raw material in selected period, and total usage of production time in selected period.

There are 4 spread sheets in this file which are PRD Input Order sheet, BOM Database sheet, Mat Database sheet, and PRD Order Print Out sheet.
PRD Input Order sheet

PRD Input Order sheet is used to record and determine production schedule. When adding data, system will calculate required products, required production time as figure 10.

Figure 10: Adding data in PRD Input Order sheet

<table>
<thead>
<tr>
<th>Machine Time</th>
<th>Total Machine Time</th>
<th>Product Cost</th>
<th>Total Product Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>(STD) (hr/lot)</td>
<td>(STD) (hr/lot)</td>
<td>($/unit)</td>
<td>($/lot)</td>
</tr>
<tr>
<td>46.10</td>
<td>77.85</td>
<td>87,120.00</td>
<td>87,120.00</td>
</tr>
</tbody>
</table>

Source: A case study of motorcycle part manufacturer

When saving file, all data will collected in database to calculate total usage of raw material in selected period and total usage of production time in selected period as figure 11.

Figure 11: Total usage of raw material in selected period and total usage of production time in selected period

<table>
<thead>
<tr>
<th>Machine</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Machine Time</td>
</tr>
<tr>
<td></td>
<td>Total Mat. Requirement</td>
</tr>
<tr>
<td></td>
<td>Cutting</td>
</tr>
<tr>
<td></td>
<td>3.30</td>
</tr>
<tr>
<td></td>
<td>2.57</td>
</tr>
</tbody>
</table>

Source: A case study of motorcycle part manufacturer

After that the inventory management system will present production status as figure 12.

Figure 12: Production status

<table>
<thead>
<tr>
<th>PRD No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRD15-01</td>
</tr>
<tr>
<td>PRD15-02</td>
</tr>
<tr>
<td>PRD15-03</td>
</tr>
<tr>
<td>PRD15-04</td>
</tr>
<tr>
<td>PRD15-05</td>
</tr>
</tbody>
</table>

Source: A case study of motorcycle part manufacturer
Production operator can print out production order as figure 13.

Figure 13: Production order

<table>
<thead>
<tr>
<th>No.</th>
<th>Product No.</th>
<th>Category</th>
<th>Material</th>
<th>Status</th>
<th>Type</th>
<th>Print Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100001</td>
<td>A</td>
<td>10000x</td>
<td>Good</td>
<td>10</td>
<td>12/2/2017</td>
</tr>
</tbody>
</table>

Source: A case study of motorcycle part manufacturer

4. SUMMARY

Before applying the inventory management system, recording, calculating, and checking status were made by man that took long time and was difficult to develop. After applying the inventory management system, the motorcycle part manufacturer has necessary database which provides production schedule, inventory status, total usage of raw material and total usage of production time, and other necessary information to help workers work faster and entrepreneur make a right decision due to updated information. Time to check inventory status has been reduced from 30 min to 3 min. Time to determine production schedule also has been reduced from 30 min to 3 min.

REFERENCE LIST

5. Gopalakrishnan, P. (1976). Inventory problems in public sector enterprises in India. *International journal of physical distribution & Logistics management,* 6, 135-143