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ABSTRACT 

 

Purpose Taguchi provided some useful tools such as various orthogonal arrays, interaction 

tables, linear graphs, etc. for planning fractional factorial experiments and had many 

successful application cases in quality engineering (Taguchi, 1986). However, many research 

articles explored the methods that were used to construct those tools and tried to improve 

them. The aim of this article is to develop a new tool to substitute the uses of Taguchi’s 

orthogonal arrays and interaction tables. 

Design/methodology/approach Using a number representation system whose base is a power 

of 2, Tsai (1999) developed an easy algorithm for obtaining multi-factor interaction columns 

in geometrical designs, which serves as theoretic background for the development of a new 

tool.  

Finding Based on the algorithm of base 4, in this article we propose a Basic Quaternary 

Design Table (BQDT) which is a 4 by 4 squared matrix with entries of both decimal and 

quaternary column numbers. A BQDT has a nice structure of confounding relationships so 

that users could identify multi-factor interaction columns in a straightforward manner 

without looking up tables. The advantages of the proposed BQDT include (1) it serves as an 

efficient tool for column assignment problem; (2) it can substitute the use of Taguchi’s 

interaction table; (3) it is visually appealing such that the users can easily recognize some 

special designs.  

Originality/value Both geometrical design matrix and the BQDT can be used jointly to plan a 

two-level fractional factorial experiment without looking up tables, which can substitute the 

uses of Taguchi’s orthogonal arrays and interaction tables when run size n is a power of 2.  
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INTRODUCTION 

 

Taguchi’s orthogonal arrays are useful tool for planning fractional factorial experiments and 

have many successful application cases in quality engineering (Taguchi, 1986). For planning 

an experiment, Taguchi provided some useful tools such as various orthogonal arrays (or 

design matrices), interaction tables, linear graphs, etc. and adopted the column assignment 

method in which the required factors are assigned to appropriate columns of a given 

orthogonal array. However, many research articles explored the methods that were used to 

construct those tools and tried to improve them (Bullington, et al., 1990; Kacker, et al., 1991). 

 

The geometrical design (Gn) proposed by Plackett & Burman (1946), which is the same as a 

regular Hadamard matrix when the run size of n is a power of 2, can be constructed easily by 

using a consecutively doubling method without any computation or looking up tables; that 

has a practical advantage for uses and overwhelms the use of Taguchi’s orthogonal arrays. 

Taguchi’s interaction table is a n by n triangle matrix with the entries of two-factor interaction 

columns, where n is the number of run size of an orthogonal array. The table can be used to 

find multi-factor interaction columns efficiently; however, its size becomes larger as n 

increases so as to create a big burden for uses by looking up lager tables.  

 

The aim of this article is to develop a new efficient tool based on geometrical designs to 

substitute the uses of Taguchi’s orthogonal arrays and interaction tables. Using a number 

representation system whose base is a power of 2, Tsai (1999) developed an easy algorithm 

for obtaining two-factor or multi-factor interaction column in geometrical designs. Based on 

the results of base 4, a Basic Quaternary Design Table (BQDT) is proposed in this article for 

planning two-level fractional factorial experiments. The content is organized as follows: 

geometrical designs and the number representation algorithm for 2fi are stated first, then a 

BQDT is proposed and its wordlength pattern is discussed, finally some special designs using 

the BSDT with visually appealing are presented and discussed. 

 

GEOMETRICAL DESIGNS 

 

A doubling method was given by Plackett and Burman (1946, p313): If A is orthogonal,  
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B  is also orthogonal and has double the order of A. Note that B can be 

expressed as B=[AL, AR], where AL=[A, A]’, AR=[A, -A]’, and AR is called “fold-over” by 

Box and Wilson (1951). Starting from G2, geometrical designs (GD’s) can be obtained by the 

successive doubling method as follows:  
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Similarly, all geometrical designs with higher orders such as G16, G32, G64, etc. could be 

obtained easily by hand writing, or by using “Excel” functions such as “copy” and “replace” 

without any computation. Note that a geometrical design is the same as Hadamard matrix 

when its run size is a power of 2. 

 

NR ALGORITHM FOR 2FI IN GD’S 

 

Tsai (1999) showed that the doubling method has a nice recursive property for obtaining 

two-factor interactions (2fi’s). By observing the basic matrix of doubling
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, respectively. This property is 

well preserved during the process of doubling. If a geometrical design is partitioned as 

left-half and right-half parts such as G2n=[AL, AR], where AL=[Gn, Gn]’, AR=[Gn, -Gn]’, then 

three confounding relationships can be observed as follows: 

 

(1) The 2fi column of any two given columns in AL remains in AL.  

(2) The 2fi column of any two given columns in AR remains in AL. 

(3) The 2fi column of any two given columns of which one is in AL and the other one is in AR 

remains in AR.  

 

Namely, the basic rule for 2fi is “left by left  left”; “right by right  left”; “left by right 

right”, or in short AL x AL  AL; AR x AR  AL; AL x AR AR. This rule can be easily 

extended to higher order interactions. 

 

Based on a number representation system whose base is a power of 2, Tsai (1999) proposed 

an efficient method, called NR method, for obtaining the 2fi column. Let E denote the 2fi 

column of two given columns C and D, namely, E=Tn(C,D), then the NR method for 

quaternary case is stated as below: 

1. Convert two given column numbers C and D into digits with base 4. 

2. Compute E=Tn(C,D) digit by digit according to the basic confounding relationships in G4 

such as T4(1,2)=3; T4(1,3)=2; T4(2,3)=1; T4(0,j)=j; T4(j,j)=0, j=0,1,2,3. 

3. Convert the resulting digit numbers with base 4 back to a decimal digit number. 

 

Two numerical examples are given below:  
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a. T16(9,14)=T16([21,32])=[13]=7;  

b. T128(13,99)=T128([0031],[1203])=[1232]=110. 

 

BASIC QUATERNARY DESIGN TABLE 

 

Based on the above NR algorithm for the quaternary case, since its basic confounding 

relationship T4(i,j), i, j=0,1,2,3 is quiet straightforward and is almost memory free, we can 

easily construct a “Basic Quaternary Design Table (BQDT)” as in Table 1.  

 

Table 1. A Basic Quaternary Design Table (BQDT) for G16. 

0 (00) 4 (10) 8 (20) 12 (30) 

1 (01) 5 (11) 9 (21) 13 (31) 

2 (02) 6 (12) 10 (22) 14 (32) 

3 (03) 7 (13) 11 (23) 15 (33) 

 

This is a two-level geometrical design with 16 runs, say G16, in which all sixteen columns are 

arranged in a 4x4 square table, the entries of 0 to 15 are decimal column numbers while the 

entries in the parentheses are corresponding quaternary column numbers. The usefulness of 

this BQDT has two aspects: (1) the required factors can be assigned directly to corresponding 

columns to form a fractional factorial design; note that the column 0 is an identity column 

which cannot be assigned any factor; (2) any multi-factors interaction can be obtained 

naturally according to the basic confounding relationships in G4, for example, the 2fi of 

column 9 (21) and column 14 (32) is column 7 (13). Therefore, applying the basic 

confounding relationships in G4, we can obtain the 2fi of any two given columns in a 

straightforward manner without looking up any interaction table. In other words, the BQDT 

can substitute the use of Taguchi’s interaction table in a more natural way.  

 

WORDLENGTH PATTERN OF BQDT 

 

Maximum resolution (Box & Hunter, 1961) and minimum aberration (Fries & Hunter, 1980) 

are two important criteria for choosing a good fractional factorial design, in which the 

wordlength patterns (WLP's) are required for comparisons. A defining relation is a word of 

letters (factors) denoted by 1, 2, 3…(or A, B, C…) and the number of letters in a word is 

called as its wordlength. A 2
n-p

 fractional factorial design d with n factors is uniquely 

determined by p independent defining relations (words) which generate the defining contrast 

subgroup. Then, the wordlength pattern of a design d is defined as the vector WLP(d)=[A1(d), 

A2(d), …, An(d)], where Ak(d) is the number of length-k words in the defining contrast 

subgroup. In this section, we will discuss the most often used length-four and length-three 

words, respectively.  

 

Assume that 15 factors are assigned to columns 1-15 in a saturated 2
15-11

 design and a BQDT 

(G16) is used to obtain both A3 and A4. To facilitate the presentation, let j-th column set be 

denoted by C(j) = {(j,0), (j,1), (j,2), (j,3)} while i-th column set is denoted by C(i) = {(0,i), 

(1,i), (2,i), (3,i)}. By using combinatorial method, all four-factor interactions (4fi’s) 

confounded with the identity column (column 0) will be identified first, and they are 

classified into five different categories. Note that column 0 is also assumed as one factor and 

is included in the analysis. 
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(a) Column and row: There are 8 4fi’s in three column sets and three row sets, for examples, 

T4(10,11,12,13)=00; T4(03,13,23,33)=00.  

 

(b) Pair in each of two column sets: Consider a pair factors are in each of two column sets, 

for example, in column sets 0 and 1, (00,01,12,13), (10,11,02,03), (00,11,02,13), 

(10,01,12,03), (00,11,12,03), (10,01,02,13) confounded with column 0. There are 

6
2

4









combinations for four column sets, and 6 4fic’s are in each combination, therefore 

6x6=36 4fic’s are obtained in subtotal. 

  

(c) Pair in each of two row sets: Similar to column sets above, 36 4fic’s are obtained in 

subtotal. For example, in row sets 0 and 1, (00,10,21,31), (01,11,20,30), (00,11,20,31), 

(01,10,21,30), (00,11,21,30), (01,10,20,31) confounded with column 0. 

 

(d) 2x2 Square: There are 6 2x2 square in any two column sets, for example, in column set 0 

and 1, (00,01,10,11), (00,02,10,12), (00,03,10,13), (01,02,11,12), (01,03,11,13), 

(02,03,12,13). Thus, there are 6 combinations for four columns sets, and 6 4fic’s are in 

each combination, therefore 6x6=36 4fic’s are obtained in subtotal.  

 

(e) Latin Square: Similar to a Latin Square, each factor can only be shown up once either in a 

row or a column, example, (00,11,22,33),(01,10,23,32), (02,10,21,33), etc. There are 

4!=24 4fic’s in a 4x4 Latin Square.  

 

In total, there are 8+36+36+36+24=140 4fi’s in a BQDT with 16 factors including column 0. 

If a four-factor interaction (4fi) contains the identity column (column 0) then it is a length-3 

word, otherwise it is a length-4 word. By fixing column 0 in five categories, the number of 

length-three words is equal to A3=2+9+9+9+6=35; while the number of length-four words is 

equal to A4=6+27+27+27+18=105. 

 

SOME SPECIAL DESIGNS 

 

Chen, Sun and Wu (1993) provided a catalogue of two-level and three-level fractional 

factorial designs with small runs, the additional column numbers other than independent 

columns are reported and the design numbers are arranged as [k-p.i] in the given tables. Two 

special designs will be adopted to illustrate the use of a BQDT, and how to construct other 

alternative designs. For a BQDT with run size n=16, the left-half part contains columns 0-7 

while the right-half part contains 8-15.  

 

(a) Even MA Resolution IV designs 

 

The series of 14

IV2  , 38

IV2  , 1116

IV2  , 2632

IV2  ,... has twice as many runs (n=2k) as factors (k) and are 

even minimum aberration (MV) resolution IV designs, in which each of k-1 alias sets 

contains k/2 2fi’s. Table 2 shows an example of k=8 in [8-4.1], factors are assigned to 

columns {1,2,4,5,8,11,13,14}, each of 7 blank columns contains 4 2fi’s, and W=(0,14,0,0,0,1). 

Table 3 shows another similar even MA resolution design in which factors are assigned to 

columns 8-15 in the right-half part, each of 7 blank columns in the left-half part contains 4 

2fi’s, and with the same W=(0,14,0,0,0,1).  
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Table 2. The design of 2
8-4

 with even MA resolution IV in [8-4.1]. 

00 10 20  

01   31 

02   32 

 13 23  

 

Table 3. The similar design of 2
8-4

 with even MA resolution IV. 

00  20 30 

  21 31 

  22 32 

  23 33 

 

(b) Maximal number of Clear 2fi’s  

 

In Wu and Chen (1992), any two-factor interaction (2fi) that is not aliased with any main 

effect or other 2fi’s is called “clear”. Table 4 shows that 8 factors are assigned to columns 

{1,2,3,4,5,6,7,8} in [8-4.6], the 2fi of any two factors in left-half part remains in left-half part; 

the 2fi of column 8 with any column in left-half part remains in right-half part. Obviously, 

seven clear 2fi’s in columns 9-15 are clear. Table 5 shows that if column 8 is replaced by any 

one from columns 9-15 in Table 10, then the design also have seven clear 2fi’s in right-half 

part.  

 

Table 4. The design of 2
8-4

 with seven clear 2fi’s in [8-4.6]. 

00 10 20  

01 11   

02  12   

03  13   

 

Table 5. The similar design of 2
8-4 

with seven clear 2fi’s. 

00 10  30 

01 11   

02  12   

03  13   

 

Above all, Tables 2, 3, 4, and 5 show that the BQDT is visually appealing in which some 

special patterns and confounding relationships exist for special designs. This highlights 

another advantage of BQDT over the Taguchi’s interaction tables. 

 

CONCLUSIONS 

 

A Basic Quaternary Design Table (BQDT) was proposed as a new tool for an experimenter to 

plan a two-level fractional factorial design, in which all required factors can be assigned 

directly into the corresponding columns of the table. The BQDT has a nice structure of 

confounding relationships so that users could identify any interaction columns in a 

straightforward manner without looking up tables. The length-three or length-four words of 

the BQDT are classified into five categories. Besides, some special designs such as even 

minimum aberration resolution IV or maximal clear 2fi’s could be constructed easily with the 
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help of a BQDT. Note that one of the key advantages to the practical users is that the BQDT 

is visually appealing. Furthermore, the BQDT can be extended to a large case in the future 

research.  
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