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ABSTRACT 

 

Purpose – The paper aims to improve the key quality performance of the terminal of 

earphone in an electronic company.  

Design/methodology/approach – Sequential experimental designs are employed. Significant 

input variables are found trough a full factorial design. Then a response surface model is 

constructed considering curvature in the linear model. 

Findings – Optimized key input variables’ parameters are found using the response surface 

model. The key quality performance, coplanarity of the terminal of earphone has been 

improved. 

Research limitations/implications – Instead of running a full factorial design in the first 

stage, a fractional factorial may be used to reduce experimental runs. 

Originality/value – The methodology used in this case can be easily extended to similar 

cases. 

 

Keywords quality improvement, design of experiments, response surface methodology, 

central composite design, parameter optimization  

 

INTRODUCTION 

 

Response surface methodology (RSM) is a collection of statistical and mathematical 

techniques useful for developing, improving, and optimizing products and processes. The 

most extensive applications of RSM are particularly in situations where several input 

variables have potentially influence on some performance measures or quality characteristics 

of the product or process. RSM initiates from design of experiments (DOE) to determine the 

factors’ values for conducting experiments and collecting data. The data are then used to 

develop an empirical model that relates the process response to the factors. Subsequently, the 

model facilitates to search for better process response, which is validated through 
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experiments. The above procedure iterates until an optimal process is identified or the limit 

on experimental resources is reached. RSM is a very important tool for product and process 

improving in the improvement phase of Six Sigma Management.  

 

Company A is an electronics enterprise in Tianjin, which engaged in supplying many kinds 

of electronic connectors for Motorola mobile phone division. In the supplying process, the 

company often received feedback complaints from customers. One kind of earphone named 

AJR45 had defect of bad echo caused by large coplanarity of the terminal. In order to 

improve the quality of products and reduce quality cost, the company adopted the 

one-factor-at-a-time (OFAT) approach and just selected the best existing experiment 

conditions as the optimal operating conditions. As we know, OFAT does not work well for 

process optimization if there are interactions among input variables. The solution by OFAT 

was not optimal in practice. The article presents a systematic solution to this problem through 

sequential use of experimental design to minimize the coplanarity and thus improve product 

quality.  

 

LITERATURE REVIEW 

 

Experimental design is widely used in manufacturing (Mukherjee & Ray, 2006; Sharma & 

Yadava, 2013; Koleva and Luchkov, 2005). C F Jeff Wu and Michael S Hamada(Wu & 

Hamada, 2009) classify experimental problems in to five broad categories according their 

objectives: treatment comparisons, variable screening, response surface exploration, system 

optimization and system robustness. RSM is a critical technology in developing new 

processes, optimizing their performance and improving the design and/or formulation of new 

products (Box et al,2005; Myers and Montgomery, 1995; Sefa-Dedeh, et al 2003). Myers and 

Montgomery (1995) also point out that most applications of RSM are sequential in nature. A 

screening experiment or a first order model is conducted first to identify important input 

factors. If the there is strong curvature exists and the first order model is not adequate, a 

second model or response surface model is needed. Cihan M.T. et al construct response 

surface for compressive strength of concrete through sequential design of a 2
7-4

 fractional 

factorial and then a D-optimal design (Cihan, Güner & Yüzer, 2013).  He et al (2009) use 

sequential experimental design to improve the isolation of the fused biconical taper 

wavelength division multiplexer. In this paper, we design a full factorial experiment to find 

the important factors and a response surface model to optimize process parameters to 

improve coplanarity of the terminal of earphone.  

 

THE FIRST STAGE EXPERIMENT 

 

Most applications of response surface methodology are sequential in nature. That is, at first 

some ideas are generated concerning which factors or variables are likely to be important in 

the response surface study. This usually leads to an experiment designed to investigate these 

factors with a view toward eliminating the unimportant ones. This purpose of the experiment 

at this stage is to screen important factors or input variables. 
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Before starting experiment, we need to identify factors that affect coplanarity of the terminal 

by cause and effect analysis using fishbone diagram and cause and effect matrix. The 

coplanarity is mainly affected by the operating conditions of the gas riveting end machine. 

The factors are cylinder pressure, block height, decent speed, slot width. Table 1 gives factors 

and their levels in the experiment.  

 

Table 1. Factors and their levels in experiment 

 

Factors Types Levels Are there center points 

A (cylinder pressure) variable 6-8 Pa Yes 

B (decent speed) variable 2-4 s/mm Yes 

C (block height) variable 13.1-13.7 mm Yes 

D (slot width) variable 40-60 mm Yes 

 

Because there are less than five factors, we can use full factorial design in order to screen 

significant factors. We choose the 2
4 

design with four center points to check the possible 

curvature. Table 2 shows the experimental arrangement. Note that the run order of the 

experiment has been randomized.  

 

Table 2. Experiment arrangement for the 2
4 
design (coded variables) 

 

Run order Center pt A B C D Y 

1 1 1 -1 -1 -1 0.069 

2 1 -1 -1 -1 1 0.087 

3 1 1 1 -1 1 0.071 

4 1 -1 1 1 -1 0.095 

5 0 0 0 0 0 0.082 

6 1 -1 1 1 1 0.093 

7 1 -1 1 -1 -1 0.086 

8 1 1 1 1 1 0.083 

9 1 1 -1 1 -1 0.081 

10 1 1 1 1 -1 0.082 

11 1 -1 -1 -1 -1 0.088 

12 1 -1 -1 1 1 0.094 

13 0 0 0 0 0 0.081 

14 1 1 -1 -1 1 0.072 

15 0 0 0 0 0 0.079 

16 1 -1 1 -1 1 0.085 

17 1 -1 -1 1 -1 0.093 

18 0 0 0 0 0 0.081 
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Run order Center pt A B C D Y 

19 1 1 1 -1 -1 0.073 

20 1 1 -1 1 1 0.084 

 

The experimental data in Table 2 were analyzed by Minitab. Table 3 shows the estimated 

effects and coefficients for response Y. From Table 3 we can find that factor A and C are 

significant with p-value<0.05, the interaction of A*C is significant with p-value=0.05.  

 

Table 3. Estimated regression coefficients for Y (coded units) 

 

Term Effect Coef SE Coef T P 

Constant  0.083500 0.000315 265.44 0.000 

A -0.013250 -0.006625 0.000315 -21.06 0.000* 

B -0.000000 -0.000000 0.000315 -0.00 1.000 

C 0.009250 0.004625 0.000315 14.70 0.001* 

D 0.000250 0.000125 0.000315 0.40 0.718 

A*B 0.000750 0.000375 0.000315 1.19 0.319 

A*C 0.002000 0.001000 0.000315 3.18 0.050* 

A*D 0.001000 0.000500 0.000315 1.59 0.210 

B*C 0.000250 0.000125 0.000315 0.40 0.718 

B*D -0.001250 -0.000625 0.000315 -1.99 0.141 

C*D 0.000500 0.000250 0.000315 0.79 0.485 

A*B*C -0.001000 -0.000500 0.000315 -1.59 0.210 

A*B*D -0.000500 -0.000250 0.000315 -0.79 0.485 

A*C*D 0.000250 0.000125 0.000315 0.40 0.718 

B*C*D -0.000000 -0.000000 0.000315 -0.00 1.000 

A*B*C*D 0.000750 0.000375 0.000315 1.19 0.319 

Ct Pt  -0.00275 0.000703 -3.91 0.03 

S = 0.00125831, R-Sq = 99.57%, R-Sq(adj)=97.29% 

Note: * means that the p-value is less than 0.05, and the corresponding term is 

significant 

 

To reduce the regression model, we need to delete those insignificant terms and keep A, C 

and A*C in the model. Table 4 shows the estimated effects and coefficients for response Y of 

the reduced model, and Table 5 shows the results of analysis of variance. 
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Table 4. Estimated regression coefficients for Y (coded units) 

 

Term Effect Coef SE Coef T P 

Constant  0.08350 0.000331 252.480 0.000* 

A -0.01325 -0.006625 0.000 -20.03 0.000* 

C 0.00925 0.004625 0.000 13.98 0.000* 

A*C 0.00200 0.001000 0.000 3.02 0.009* 

Ct Pt  -0.002750 0.001 -3.72 0.002* 

S = 0.00132288, R-Sq = 97.64%, R-Sq(adj)=97.01% 

Note: * means that the p-value is less than 0.05, and the corresponding term is 

significant 

 

Table 5. Analysis of variance for Y (coded units) 

 

Source DF Seq SS Adj SS Adj MS F P 

Main effects 2 0.0010445 0.0010445 0.0005223 298.43 0.000* 

2-way 

interactions 

1 0.0000160 0.0000160 0.0000160 9.14 0.009* 

Curvature 1 0.0000242 0.0000242 0.0000242 13.83 0.002* 

Residual error 15 0.0000263 0.0000263 0.0000018   

Pure error 15 0.0000263 0.0000263 0.0000018   

Totol 19 0.0011110     

Note: * means that the p-value is less than 0.05, and the corresponding term is 

significant 

 

Figure 1 shows the Pareto chart of the standardized effects, and Figure 2 shows the normal 

probability plot of the standardized effects. Both of them indicate that the effects of A, C and 

A*C are significant. But the curvature term is also significant. That means the first order 

model is not adequate. A second-order model for the significant variables A and C needs to 

be designed, and more experiments need to be done to fit the model. 
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Figure 1 Pareto chart of the standardized effects 
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Figure 2 Normal probability plot of the standardized effects 

 

EXPERIMENTAL DESIGNS FOR FITTING RESPONSE SURFACES 

 

The first stage experiements results also shows that the lower pressure (factor A) and higher 

Height may yield possible lower coplanarity. Based on the engineering experience and 

steepest ascend analysis, we choose the high level of pressure to the high end of operating 

range, and the low level of height to the low level of operating end. Coplanarity was 

significantly reduced through the first stage experiement. Since there is possible curvature, a 

composite face-centered design (CCF) is used for the second stage experiments as shown in 

Figure 3, for two variables, there are four factorial points, five centre points and four axial 

points in the design. 
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Figure 3 CCF design for two factors 

 

Table 6 shows the experiment arrangement and results. In the second column, Pt type is the 

type of the experiment run.  1 stands for corner point, -1 stands for axial point, and 0 stands 

for center point. Also the run order of the experiment has been randomized. 

 

Table 6. Experiment arrangement for the CCF (coded units) 

 

Run order Pt type A C Y 

1 0 0 0 0.029  

2 -1 0 1 0.036  

3 -1 1 0 0.022  

4 1 -1 -1 0.031  

5 1 1 1 0.039  

6 -1 0 -1 0.022  

7 0 0 0 0.024  

8 0 0 0 0.029  

9 1 1 -1 0.018  

10 0 0 0 0.027  

11 0 0 0 0.027  

12 -1 -1 0 0.030  

13 1 -1 1 0.033  

 

Tables 7 and 8 show the analytical results. It can be seen from Table 7 that two-order term 

A*A is not significant and deleted from the model. The new results are shown in Table 9 and 

10. 
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Table 7. Estimated regression coefficients for Y (coded units) 

 

Term Coef SE Coef T P 

Constant 0.026862 0.000856 31.368 0.000 

A -0.002500 0.000842 -2.969 0.021 

C 0.006167 0.000842 7.324 0.000 

A*A -0.000017 0.001241 -0.014 0.989 

C*C 0.002983 0.001241 2.404 0.047 

A*C 0.004750 0.001031 4.606 0.002 

S = 0.00206235, R-Sq = 92.81%, R-Sq(adj)=87.68% 

Note: * means that the p-value is less than 0.05, and the corresponding term is 

significant 

 

Table 8. Analysis of variance for Y (coded units) 

 

Source DF Seq SS Adj SS Adj MS F P 

Regression 5 0.000385 0.000385 0.000077 18.08 0.001 

Linear 2 0.000266 0.000266 0.000133 31.23 0.000 

Square 2 0.000029 0.000029 0.000014 3.36 0.095 

Interaction 1 0.000090 0.000090 0.000090 21.22 0.002 

Residual 

Error 

7 0.000030 0.000030 0.000004   

Lack-of-Fit 3 0.000013 0.000013 0.000004 1.03 0.469 

Pure Error 4 0.000017 0.000017 0.000004   

Total 12 0.000414     

Note: * means that the p-value is less than 0.05, and the corresponding term is 

significant 

 

Table 9. Estimated regression coefficients for Y (coded units) 

 

Term Coef SE Coef T P 

Constant 0.026857 0.000729 36.833 0.000 

A -0.002500 0.000788 -3.174 0.013 

C 0.006167 0.000788 7.830 0.000 

C*C 0.002976 0.001073 2.773 0.024 

A*C 0.004750 0.000965 4.924 0.001 

S = 0.00192918, R-Sq = 92.81%, R-Sq(adj)=89.22% 

Note: * means that the p-value is less than 0.05, and the corresponding term is 

significant 
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Table 10. Analysis of variance for Y (coded units) 

 

Source DF Seq SS Adj SS Adj MS F P 

Regression 4 0.000385 0.000385 0.000096 25.83 0.000 

Linear 2 0.000266 0.000266 0.000133 35.69 0.000 

Square 1 0.000029 0.000029 0.000029 7.69 0.024 

Interaction 1 0.000090 0.000090 0.000090 24.25 0.001 

Residual 

Error 

8 0.000030 0.000030 0.000004   

Lack-of-Fit 4 0.000013 0.000013 0.000003 0.77 0.596 

Pure Error 4 0.000017 0.000017 0.000004   

Total 12 0.000414     

Note: * means that the p-value is less than 0.05, and the corresponding term is 

significant 

 

0.0040.0020.000-0.002-0.004

99

90

50

10

1

Residual

P
er

ce
n

t

0.0400.0350.0300.0250.020

0.002

0.000

-0.002

Fitted Values

R
es

id
u

a
l

0.0020.0010.000-0.001-0.002-0.003

4

3

2

1

0

Residual

F
re

q
u

en
cy

13121110987654321

0.002

0.000

-0.002

Observation Order

R
es

id
u

a
l

Normal Probablity Plot of the Residuals Residual Versus the Fitted Values

Histogram of the Residuals Residuals Versus Observation Order

Residual Plot for Y

 

Figure 4 Four-in-One residual plots for response Y 

 

The second-order model fit to the coded variables is  

2ˆ 0.0269 0.0025 0.00617 0.00298 0.00475y A C C A C                      (1) 

The model is fit well since R-Sq=92.81% and R-Sq(adj)=89.22%. 

 

To check the validity of the fitted model we also conducted residual analysis (see Figure 4). 
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Results show that the residual is normally distributed, and equal variance and independence 

hold true. 
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Figure 5 Contour plot and response surface 
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Figure 6 Response optimizer output 

 

We can obtain the minimum point from model (1) directly, unfortunately, the minimum point 

is not at the region of operability. Hence we use computer to search the optimal point using 
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“response optimizer” of Minitab automatically. As shown in Figure 6, the optimal point is at 

A=1.0, C=-1, with the response Y=0.0164.  At the same time, we estimate that at the 

optimal point the prediction confidence interval at =0.05 is (0.0126, 0.0203). The 

coplanarity had a mean 0.0975 mm with a standard deviation 0.01mm before optimization, 

while it is 0.012-0.0203 mm after optimization. It is obvious that the coplanarity has been 

significantly improved. The experimental result is confirmed by confirmation runs. 

 

CONCLUSION 

 

The article presents a solution to optimize the coplanarity of the terminal of earphone, using 

designed experiments and response surface methodology. By designing experiments and 

analyzing experimental data, the optimum technical condition has been found, and the 

coplanarity has been improved.  

 

ACKNOWLEDGEMENT 

 

The research was sponsored by National Natural Science foundation of China (NSFC 

70931004, 71225006). 

 

REFERENCES 

 

1. Box, G.E.P., Hunter, J.S. &Hunter, W.G. (2005). Statistics for experiments: design, 

innovation, and discovery (2nd ed.), New York:Wiley. 

2. Cihan, M. T., Güner, A., Yüzer N.(2013), “Response surfaces for compressive strength 

of concrete”, Construction and Building Materials, Vol. 40, pp.763–774. 

3. He, Zhen, Han, Ya-Juan, Zhao, Shuang and Park, Sung H. (2009). “Product and process 

optimization design through Design of Experiments: A case study”, Total Quality 

Management & Business Excellence, Vol.20, No.1, pp.107 -113. 

4. Koleva, E., Vuchkov, I.(2005), “Model-based approach for quality improvement of 

electron beam welding applications in mass production”, Vacuum,  Vol.77, pp. 

423–428. 

5. Myers, R.H., Montgomery, D.C. (1995). Response surface methodology: process and 

product optimization using designed experiments. New York: Wiley. 

6. Mukherjee, I., Ray, P. K.(2006), “A review of optimization techniques in metal cutting 

processes”, Computers & Industrial Engineering, Vol.50, pp.15–34. 

7. Sefa-Dedeh, S., et al (2003), “Application of response surface methodology for studying 

the quality characteristics of cowpea-fortified nixtamalized maize”, Innovative Food 

Science and Emerging Technologies, Vol.4, pp.109–119. 

8. Sharma, A., Yadava, V.(2013), “Modelling and optimization of cut quality during pulsed 

Nd:YAG laser cutting of thin Al-alloy sheet for curved profile” , Optics and Lasers in 

Engineering, Vol.51, pp. 77–88. 

9. Wu, C. F. J., Michael S. H.(2009), Experiments planning, analysis and optimization (2
nd

 

edition), New York:Wiley. 


