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ABSTRACT 

 

In this paper, we present a new approach of correlated risk assessment by linking the multiple 

process capability indices and loss functions, in which the multivariate process capability 

indices and multivariate loss functions describe the likelihood and consequences as a result 

of nonconformities in multivariate manufacturing or environmental system respectively. Then, 

the associated relationship equations are developed using multivariate methods. Moreover, a 

step-by-step procedure is provided to facilitate the implementation of the correlated risk 

assessment. 

 

Given the multivariate process capability indices, we show that the expected loss can be 

estimated by our developed relationship equations. Two numerical examples are also given to 

demonstrate how the correlated manufacturing and environmental risks can be properly 

assessed by linking the multivariate process capability indices and multivariate loss function. 

The risk information of likelihood and expected loss classified in the four planning zones of a 

strategic planning matrix provides practicing managers and engineers with a decision 

making tool for prioritizing their quality improvement projects when conducting risk 

assessment for any multivariate process or environmental system. Once the existing 

quality/environmental problems and their Key Performance Indicators (KPI) are identified, 

one may conduct risk assessment by applying the relationship equations to evaluate the 

impact of correlated risk on manufacturing processes or multiple environmental emissions 

inside company and it can lead to the direction of continuous improvement for any industry.  

  

Keywords: Correlated risk assessment; multivariate process capability indices; multivariate 

loss functions; quality management; environmental management.  

 

INTRODUCTION 

 

In today’s business environment, almost every industrial product has more than one quality 

characteristic and those characteristics may be correlated. Thus, it is important for companies 

to evaluate the correlated risks associated with their processes to increase the system safety 
and product quality. Environmentally speaking, this process of correlated risk analysis can 

also help reduce hazardous waste being released from their facilities. Traditionally, engineers 

perform process capability studies to analyze the key characteristic performance by using 

multivariate process capability indices for measuring process performance. Quality 

improvement actions can be taken if the process is not capable of meeting specifications. In 

addition, quality engineers seek to emphasize the urgency of process improvement to senior 
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management by quantifying the likelihood of nonconforming products and their impact on 

expected quality loss and costs (Pan and Lee, 2010).   

 

Engineering System Risk Assessment (ESRA) systematically evaluates probabilities and 

consequences of acute, catastrophic failures ((Ayyub, 2003), (KarimiAzari et al., 2011), 

(Montague, 1990)). According to (Ayyub, 2003), risk is commonly evaluated as the product 

of the likelihood of occurrence and its impact or severity of its occurrence, namely, RISK= 

LIKELIHOOD x IMPACT, where likelihood is expressed as the probability of a 

nonconforming event and the impact represents risk as an expected value or as an average 

loss. Both (Montague, 1990) and (Ayyub, 2003) have discussed the Quantitative Risk 

Assessment (QRA) methods at length.  

 

Recently, such quantitative risk assessment methods have been extended to supply chain 

management (Vilko and Hallikas, 2011) and the “green supply chain” (Wang et al., 2012), 

which is timely since environmental concerns are drawing much more attention from both 

academia and industry. Many Statistical Process Control (SPC) tools and principles as applied 

to quality management are equally useful in achieving environmental improvements. For 

instance, (Corbett and Van Wassenhove, 1995), and (Madu, 1996, 2004) offer a deep analysis 

of the broad range of quality control methods that can be applied to environmental 

management. One benefit of SPC is that it helps operators see and understand problems. 

Environmental SPC applications also have similar benefits. Operators rarely see the actual, 

negative impact of pollution caused by a process, but if it can be visualized in real-time 

through SPC much greater control is possible. (Corbett and Pan, 2002) propose that process 

capability indices, which measure the degree to which the process is capable of remaining 

below the existing regulatory limits, can be used as a measure of the environmental quality of 

a process.  

 

Striking the right balance between tight controls of key processes and still maintaining 

cost-effectiveness is precisely the purpose of SPC. In order to prevent further environmental 

contamination, the adoption of SPC environmental risk assessment tools should include 

process capability indices and an associated loss function for accurately monitoring and 

evaluating environmental performance. A step towards correlating likelihood with expected 

loss was taken by (Pan, 2007) as a new loss function-based risk assessment method. It links 

univariate process capability indices (used to describe the likelihood of nonconforming 

events) and loss functions (used to describe the impact of such events). The likelihood and 

consequence resulting from the nonconformance is thus evaluated simultaneously.  

 

The next step then is to build the linkage between the multivariate process capability indices 

and multivariate loss functions. Hence, this paper explores this relationship especially in 

terms of the correlated risk of a multivariate manufacturing process as well as assessing the 

correlated risk for an environmental system. Two numerical examples are given to 

demonstrate how the correlated manufacturing and environmental risks can be properly 
assessed by linking the multivariate process capability indices and multivariate loss function. 
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LITERATURE REVIEW 

 

1. Risk assessment 

 

A well-known classical method for conducting risk assessment is failure mode and effect 

analysis (FMEA), as described in for instance (Kolarik, 1995). Sometimes a criticality 

analysis component is added to this, as for instance in the D1-9000 standards at Boeing. This 

involves identifying each process step that may fail, then assigning rankings for occurrence 

probability, severity, and detectability. The “occurrence ranking” indicates how likely a 

failure is considered to be (where higher scores correspond to higher probabilities), and is 

related to the process capability indices. The “severity ranking” indicates the potential impact 

of a failure (with higher scores corresponding to more serious impact). The “detectability 

ranking” indicates how likely it is that a failure can go undetected until its full impact 

materializes; in the traditional quality control setting, this is the probability of shipping 

products containing an undetected defect. Higher scores again correspond to higher 

probability of defects going undetected. The three rankings are then multiplied, and higher 

total scores indicate higher risk. The other related applications of FMEA can be found in 

(Wang et al., 2009), (Kenchakkanavar and Joshi, 2010), (Chuang, 2010) and (Nassimbeni et 

al., 2012). 

 

Risk assessment methods have also ranged from simple classical methods to fuzzy approach 

mathematical models. (Wang et al., 2009) proposed fuzzy risk priority numbers (FRPNs) for 

prioritization of failure modes. For solving the risk assessment model selection, (KarimiAzari 

et al., 2011) used the fuzzy Technique for Order Preference by Similarity to Ideal Solution 

(TOPSIS) method to solve the risk assessment model selection problem under a fuzzy 

environment. 

 

2. Multivariate process capability indices 

 

In the past, univariate process capability indices have been used to measure the process 

performance. Various multivariate statistical methods are now employed when several quality 

characteristics are interdependent or correlated. (Wang and Chen, 1998) simplified the 

computation of multivariate process capability by using principal component analysis. (Chan 

et al., 1991) proposed a multivariate process capability index pmC  using the concept of 

Mahalanobis distance. (Chen, 1994) proposed a general multivariate capability index that 

allows elliptical and rectangular specifications. (Foster et al., 2005) later proposed a new 

multivariate capability index using a process-oriented basis representation. 

 

To develop a quantitative capability measures of a multivariate process in relation to its 

specifications, (Taam et al., 1993) proposed two multivariate process indices MCp and MCpm. 

Their multivariate process capability index MCpm is defined as the ratio of two volumes, i.e. 
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where 1R  is a modified engineering tolerance region (see Figure 1) and 2R  is a scaled 

99.73% process region, which is an elliptical region if the underlying process distribution is 
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assumed to be multivariate normal. Moreover, the modified engineering tolerance region is 

the largest ellipsoid that is centered at the target and falls within the original engineering 

tolerance region. Thus, the pmMC  index can be rewritten as 

 

 
D

MCMC ppm

1
 , (2.) 

 

where  211 ))()(1( TμΣTμ  D  is a correcting factor if the process mean μ   

deviates from the target T, Σ  is process covariance and pMC  is written in Equation (10) 

Figure1:Illustration of engineering tolerance region and modified engineering tolerance 

region. 

 

(Wang and Du, 2000) proposed to use principal component analysis to evaluate the process 

performance for multivariate data. (Wang et al., 2000) reviewed the three multivariate process 

capability indices proposed by (Hubele et al., 1991), (Taam et al., 1993) and (Chen, 1994). 

They pointed out that Hubele’s three-component capability vector lacks simplicity and could 

be confusing in its interpretation and use. Although Taam’s pmMC  index accurately reflects 

process variability and centeredness, it does not take into account the correlation between 

multiple quality characteristics. (Pan and Lee, 2010) revised Taam’s modified engineering 

tolerance region based on the assumption that the correlation of multiple quality 

characteristics is consistent with the correlation among specifications. The relationship 

between Taam’s modified engineering tolerance region (the regular one) and our revised 

engineering tolerance region (the slant one) for a process with a bivariate quality 

characteristic is illustrated in Figure 2. 
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Figure 2. Relationship between Taam’s modified region and Pan and Lee’s revised 

engineering tolerance region 

 

To overcome the drawback of overestimation using the pMC  and pmMC  indices, (Pan and 

Lee, 2010) proposed a revised engineering tolerance region (see Figure 2) and redefine new 

multivariate process capability indices, pNMC  and pmNMC  indices. Similar to pmMC  

ratio of the two volumes shown in Equation (1), the new multivariate process capability index 

can be defined as 
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where a revised engineering tolerance region 
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and where the elements of matrix *
A  are given by 
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T  is the target vector, ij  represents the correlation coefficient between the ith and jth 

quality characteristics and  ii LSLUSL   denotes the ith specification width for each side of 

rectangle circumscribed to the ellipsoid 
TA ,, *d

E . The pNMC  index can be used to evaluate 

the performance of process precision (i.e. the variability in relationship to the revised 

engineering tolerance region) and the pmNMC  index can be used to evaluate both process 

precision and accuracy (i.e. the deviation from the target).  
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3. Loss function for multivariate cases 

 

(Pignatiello, 1993) presented a quadratic loss function for multiple-response quality problems. 

He showed that this function is a generalization of the single-response Taguchi’s quadratic 

loss function. The multivariate loss function can be defined as 

 

 )()( TXCTX Q , (6.) 

 

where X is a px1 vector of quality characteristics, C is a pxp positive definite matrix of costs 

which represent the losses incurred when X deviates from the target vector, T is the target 

vector for p quality characteristics of interest, p is the number of quality characteristics. The 

quality loss matrix C can be expressed as 
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C . (7.) 

 

Note that if C is a diagonal matrix, then the loss function is the sum of p single-response 

quadratic loss functions. For non-diagonal C matrices, the off-diagonal elements are related 

to the incremental losses that are incurred when the i th and the j th pair of quality 

characteristics are simultaneously off-target. 

 

(Pignatiello, 1993) further showed that the expected multivariate loss function can be 

expressed as: 

 

 )()()()( CΣTμCTμ trQE  . (8.) 

 

 

RELATIONSHIP BETWEEN MCp,pm, NMCp,pm CAPABILITY INDICES AND 

EXPECTED LOSSES 

 

1. Relationship between MCp,pm capability indices and expected loss function 

 

Assuming that the vector X of quality characteristics follows a p-dimensional multivariate 

normal distribution with mean vector μ , variance-covariance matrix Σ  and its Taam’s 

process capability indices MCp,pm values are given, then the relationship between MCp,pm 

capability indices and expected loss function can be derived as below: 

 

1.1 The nominal-the- best case 

 

Given the MCp , MCpm values and DMCMC ppm  , the relationship equation can be written 

as 
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where the pMC  index represents the ratio of a modified tolerance region with respect to the 

process variability as written in Equation (10). 
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where 2)( iii LSLUSLr  , vi ,...,1 , iUSL  is the upper specification limit for the ith 

quality characteristic, iLSL  is the lower specification limit for the ith quality 

characteristic,   is a notation of determinant and    is a Gamma function. Taking the 

square on Equation (9), one can obtain Equation (11) 
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Equation (9) will vanish if MCp = MCpm , which means the process is on-target and the first 

term in Equation (8) becomes zero. Thus, we only need to consider the loss due to the process 

variation and the expected loss function can be reduced to )()( CΣtrQE  。 

 

Referred to the lemma stated in (Johnson and Wichern, 2007), the relationship between 

determinant and trace can be expressed as Equation (12). 
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where B is a p x p positive definite matrix, 
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)( Λ , i  is the i th eigenvalue of  B 

matrix. By Equation (12), one can derive the relationship equation between expected quality 

loss and MCp index. 
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9973.0,p  is the 99.73% percentitle of Chi-square distribution with p degree of freedom. 
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For the nominal the better case, MCp and MCpm values will be different if the process mean 

deviates from the target. To derive the relationship equation between the total expected loss 

and MCp,pm indices, we consider both the quality loss due to the process variation which can 

be expressed by Equation (12) and the quality loss due to the process mean deviated from the 

target which can also been expressed by the MCp,pm values using the following lemma stated 

in (Johnson and Wichern, 2007).  
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where B is a pp positive definite matrix, 0x  ， i  is the i th eigenvalue of B matrix, 

xPy  ，P is the orthogonal matrix consisting of p unit eigenvectors. 

 

By Equations (13) and (14), one can derive the following relationship equation between 

expected loss and Taam’s MCp,pm values 
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where Nk  is the ratio of “ )()( TμCTμ  divided by )()( 1
TμΣTμ   ”, 
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Equation (15) implies that given Taam’s MCp , MCpm values and quality loss matrix C, the 

expected quality loss for nominal-the-best case can be estimated. 

 

1.2. The smaller- the- better case 

 

Assuming that the vector X of quality characteristics follows a p-dimensional multivariate 

normal distribution with mean vectorμ , variance-covariance matrixΣ , then the MCpm index 

can be written as Equation (16) for the smaller the better case. 
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By setting T =0 in Equation (11), one can obtain Equation (17). 
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If the quadratic loss function is considered, then the expected loss can be expressed as 

Equation (18). 

 

 )()( CΣCμμ trQE  . (18.) 

 

Given MCp,pm values, one can derive the following relationship equation between expected 

loss and MCp,pm values via Equation (19) for the smaller the better case. 
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Where Sk  is the ratio of Cμμ divided by μΣμ
1 , 
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eigenvalue of CΣmatrix。 

 

Equation (19) implies that given Taam’s MCp , MCpm values and quality loss matrix C, the 

expected quality loss for smaller- the- better case can be estimated. 

 

2. Relationship between NMCp,pm capability indices and expected loss function 

 

Similar to the proof as stated in section 3.1, one can derive the following relationship 

equation between expected loss and NMCp,pm values hold for the nominal-the-better case: 
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and the pmNMC  index can be written as 
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where 211 ))()(1( TμΣTμ  D . The term D  in Equation (22) denotes a function of  

Mahalanobis distance between the process mean and target vector T . It can be used to 

measure the process deviation from target vector T . Note that the univariate pC  and pmC  

indices can be considered as a special case of new multivariate pNMC  and pmNMC  

indices if 1v  and 9973.01  . 

 

Equation (20) implies that given Pan and Lee’s NMCp, NMCpm values and quality loss matrix 

C, the expected quality loss for nominal-the-best case can be estimated. 

 

If the quadratic loss function is considered, then the expected loss can be expressed as 

Equation (18). Given NMCp and NMCpm values, one can derive the following relationship 

equation between expected loss and MCp,pm values by Equation (23) for the smaller the better 

case. 
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Where Sk  is the ratio of Cμμ divided by μΣμ
1 , 




p

jkk

kj

,1

)( || Λ ， j  is the j the 

eigenvalue of CΣmatrix. Equation (23) implies that given Pan and Lee’s NMCp, NMCpm 

values and quality loss matrix C, the expected quality loss for smaller-the-better case can be 

estimated. 

 

To facilitate practitioners in conducting the correlated risk assessment, a step-by-step 

procedure is listed as below. 

1. Perform a multivariate process capability study with the required sample size. 

2. Collect measurement data and perform a normality test for the collected data. 

3. Calculate the new pNMC  and pmNMC  indices using Equations(21) and (22). 

4. Given the new pNMC  and pmNMC  indices, calculate the expected losses for 

either nominal-the-best or smaller-the-better cases using Equations (20) and (23) 

respectively. 

5. Perform the sensitivity analysis of risk (obtain various expected losses under 

different hypothetical process capability indices) and then setup a realistic goal for 

future quality improvement. 

6. Evaluate the risk information of likelihood (reflected by process capability indices) 

and expected losses (represent impact) for different multivariate processes. Then 

prioritize various quality improvement projects by using the strategic planning 

matrix as shown in Figure 5.  
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NUMMERICAL EXAMPLES 

 

Example 1 Manufacturing risk assessment using Sultan’s manufacturing data. 

 

(Sultan, 1986) discussed an example in which the Brinell hardness (H) and tensile strength (S) 

are two quality characteristics for an industrial product. The engineering tolerances for H and 

S are given by (112.7, 241.3) and (32.7, 73.3) respectively and the target vector of H and S is 

 53,177T . After collecting 25 measurements as listed in Table 1, a multivariate process 

capability study is conducted (assuming the process is in control). 

 

Table 1. The 25 measurements of Brinell hardness (H) and tensile strength (S) for an 

industrial product. 

H S H S H S 

143 34.2 141 47.3 178 50.9 

200 57.0 175 57.3 196 57.9 

160 47.5 187 58.5 160 45.5 

181 53.4 187 58.2 183 53.9 

148 47.8 186 57.0 179 51.2 

178 51.5 172 49.4 194 57.5 

162 45.9 182 57.2 181 55.6 

215 59.1 177 50.6   

161 48.4 204 55.1   

 

By performing Shapiro-Wilk test, we found that the 25 collected measurements follow a 

multivariate normal distribution with the sample mean vector  177.2, 52.32 X  and the 

sample covariance matrix S , where 

 











6247.338925.88

8925.88338
S

.
 

 

Then, the matrix *
A  can be obtained as below: 

 

 









34.8372492.01022

92.01022349.52131
*

A  (Based on Equation (5)) 

 

The actual relationship among the 99.73% process region, 99.73% revised engineering 

tolerance region and engineering tolerance region is illustrated in Figure 3. 



 
 

S1-66 

 
Figure 3. Relationship among 99.73% revised engineering tolerance region, 99.73% process 

region and engineering tolerance region in example 1. 

 

Apparently, the process mean is close to the target and the “99.73% process region” is 

approximately equal to the “99.73% revised engineering tolerance region”. The comparison 

results of using various multivariate process indices for estimating the performance of an 

industrial product are summarized in Table 2. Since the estimated conforming rate for this 

example is 99.91% under the assumption of multivariate normality for the underlying process 

distribution and the new indices pNMC = 1.0351 and pmNMC = 1.0087, based on Equations 

(21) and (22) respectively, are nearly equal to 1; which indicates that the 99.73% process 

region is close to the 99.73% revised engineering tolerance region and the process mean is 

close to the target (see Figure 3). Thus, the true process performance can be correctly 

reflected by the new indices pNMC  and pmNMC , i.e. the process is capable. Whereas, the 

process capability is overestimated by Taam’s two new capability indices pMC = 1.8751 and 

pmMC = 1.8272 , based on Equations (10) and (2) respectively, since the correlation among 

multiple quality characteristics are not taken into account. Thus, it is suggested that the new 

indices pNMC  and pmNMC  be used in assessing the likelihood of nonconforming. 

Furthermore, assuming that the quality loss is $0.8 per unit when the hardness value is 

deviated from the target and the quality loss is $1 per unit when the strength value is deviated 

from the target, while the quality loss is $0.89 per unit when both characteristics are deviated 

from the target, the quality loss matrix can be expressed as： 

 

 









189.0

89.08.0
C , (Based on Equation (7)) 

 

, * A 3710.48, 0.0079C  and Nk  4.8303 (Based on the ratio of 

)()( TμCTμ  divided by )()( 1
TμΣTμ  

). 

 

Given the multivariate process capability indices pNMC =1.0351 and pmNMC =1.0087 (as 

listed in Table 2), the expected quality loss can be estimated by Equation (20), i.e. 
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which is the same as the expected loss calculated by Equation (8), i.e. 

 

( ) ( ) ( ) ( ) 0.256 462 462.256TE Q tr      μ T C μ T CΣ . 

 

Hence, we demonstrate that the calculation of expected quality loss using the relationship 

equation between multivariate process capability indices and loss functions is accurate.  One 

advantage of using our proposed relationship equation is that the impact of process capability 

indices on the E(Q) can be clearly understood by quality practitioners. The other advantage is 

that the risk assessment conducted in this way can facilitate the sensitivity analysis of risk 

and then setup a realistic goal for future quality improvement. For example, if the 

improvement measures successfully applied to the existing process (given that its 

pNMC and pmNMC indices have been increased to 1.5), then the expected quality loss can be 

reduced to $ 220, i.e. 
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On the other hand, if the management team wants to reduce the quality loss in half, then the 

team needs to setup a goal for the quality improvement project to bring 

pNMC and pmNMC index values up to 1.5. If the continued quality improvement measures 

have been successfully applied to the existing process (given that both pNMC  and 

pmNMC indices have been increased to 2.0), then the expected loss will be lowered to only 

$116, i.e. 
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Table 2. The basic statistics and multivariate process capability indices in example 1. 

 

Basic statistics for H and S
a
  Process capability indices 

Sample Mean for H=177.2  
pMC =1.8751 

Sample Mean for S=52.32  
pmMC =1.8272 

Standard deviation for H=18.385  
pNMC =1.0351 

Standard deviation for S=5.799  
pmNMC =1.0087 

Correlation coefficient between H and S=0.834   
a 
H represents hardness, S represents tensile strength 

 

This numerical example shows that by linking the multivariate process capability indices and 

multivariate loss function, one can perform the sensitivity analysis between the expected loss 

and process capability indices. Since the expected loss represents impact and process 

capability indices reflect the likelihood/opportunity of product failures, the simultaneous 

consideration of impact and likelihood provides a useful guideline for quality practitioners in 

performing the correlated risk assessment for any multivariate manufacturing process. 

 

Example 2 Environmental risk assessment using the air pollution data from Song-Shan 

station.  

 

There are 58 surveillance stations established by EPA of Taiwan to monitor the air quality in 

Taiwan. Song-Shan is an administrative district in Taipei city; the capital of Taiwan and a 

domestic airport is located there. It is also well known for a long history of higher pollution in 

Northern Taiwan region. The air quality data of PM10 and O3 collected by Song-Shan station 

are discussed since PM10 and O3 have potential threat to health. The recent hourly data were 

collected by Song-Shan station. In this example, daily average is used and we drop some 

missing data due to measurement failure. The basic statistics of air pollution data at 

Song-Shan station are summarized in Table 3. We found that the original air pollution data for 

PM10 and O3 did not follow a bivariate normal distribution at α=0.05. After performing the 

Box-Cox normal transformation method proposed by (Andrews et al., 1971), the scatter plot 

of air pollution data at Song-Shan station shows that the transformed data follows a bivariate 

normal distribution (see Figure 4). Note that we take an exponent of 0.6248 to the original O3 

data and an exponent of 0.1933 to the original PM10 data for normal transformation. 

 

Table 3. The basic statistics of air pollution data at Song-Shan station. 

 

Air Pollutants  Sample means  Std. deviation  Correlation coeff. 

O3  24.5204  10.2247  
0.2694 

PM10  58.6192  26.7534  

 

The upper specification limit (USL) for O3 stipulated by the EPA of Taiwan is set to the 

hourly average = 0.12 p.p.m., while the USL for PM10 is set to the daily average = 

125 3mg . After calculating the MCp,pm and NMCp,pm index values for the transformed data, 

the comparison results of using various multivariate process indices for estimating the O3 and 

PM10 air pollutants at Song-Shan district are summarized in Table 4. 
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Table 4. The basic statistics and multivariate process capability indices of O3 and PM10 after 

normal transformation. 

 

Basic statistics for air pollutants  Process capability indices 

Sample mean for O3=7.2240  
pMC =11.6806 

Sample mean for PM10 =2.1613  
pmMC =1.0392 

Standard deviation for O3=1.9514  
pNMC =11.3181 

Standard deviation for PM10=0.1938  
pmNMC =1.0070 

Correlation coefficient between O3 and 

PM10=0.2472 

 
 

 

Assume that the additional cost per patient due to the increase of respiratory diseases (caused 

by PM10 and O3 in Song-Shan district) = $83.36 when only O3 exceeds the USL; an 

additional cost per patient due to the increase of respiratory diseases =$53.16 when only 

PM10 exceeds the USL; and an additional cost per patient due to the increase of respiratory 

diseases = $66.45 when both PM10 and O3 exceed the USL, then the environmental loss 

matrix can be expressed as: 

 

 









16.5345.66

45.6636.83
C , (Based on Equation (9)) 

 

and * A 17.2000 (Based on Equation (5)) , C 15.8151, sk  53.2463 (the ratio of 

Cμμ divided by μΣμ
1 ). 

 

Based on Equations (21) and (22), pNMC = 11.3181, pmNMC = 1.0070 (as listed in Table 4), 

then the expected daily environmental loss can be estimated by Equation (23), i.e. 
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In other words, the average daily cost increase of medical expenses in Song-Shan district in 

terms of the likelihood of respiratory diseases/multivariate process capability indices = $7005, 

which is the same as the expected loss calculated by Equation (8), i.e. 

 

( ) ( ) ( ) ( ) 6673 332 7005TE Q tr      μ T C μ T CΣ  

 

Note that pMC = 11.6806, pmMC = 1.0392 (based on Equations (10) and (2) respectively) 
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are very close to pNMC = 11.3181, pmNMC = 1.0070 due to the low correlation coefficient 

(=0.269) between O3 and PM10. Moreover, significant gaps exist in between pMC = 

11.6806 and pmMC = 1.0392 as well as in between pNMC = 11.3181 and pmNMC = 1.0070, 

which indicate the existing levels for the air pollutants of PM10 and O3 are much higher than 

the target level of zero though only a few points exceeding the USL as shown in Figure 4. 

This numerical example further shows that by linking the multivariate process capability 

indices and multivariate loss function, the simultaneous consideration of expected loss 

(represents impact) and process capability indices (reflect likelihood of failure) provides 

practitioners a useful guideline in performing the correlated risk assessment for any 

environmental system. 

  

0 5 10 15 20

1
.6

1
.8

2
.0

2
.2

2
.4

2
.6

2
.8

O3^0.6248

P
M

1
0

^
0

.1
9

3
3

 
Figure 4. The scatter plot of air pollution data with upper specification limits for O3 and 

PM10 at Song-Shan station (after normal transformation) 

 

STRATEGIC INSIGHTS AND MANAGERIAL IMPLICATIONS 

 

After obtaining the relevant risk information of likelihood and expected losses from the key 

multivariate processes, practicing managers and engineers can categorize quality or 

environmental improvement projects in the following four planning zones of a strategic 

planning matrix.  

 

(a) Priority zone – high impact (in terms of high expected loss) and high likelihood (in 

terms of low capability indices). 

(b) Long-term zone – high impact and low likelihood (in terms of high capability 

indices). 

(c) Contingency zone – low impact (in terms of low expected loss) and high likelihood. 

(d) Non-priority zone – low impact and low likelihood  
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The strategic planning matrix containing four zones as shown in Figure 5 is used for these 

assessments. 

 

  Impact & Importance 

  Low High 

Likelihood 

High Contingency Zone Priority Zone 

Low Non-Priority Zone Long-Term Zone 

 

Figure 5.  The classification of four planning zones based on the impact and likelihood 

 

It is worthy to note that (1) special attention and immediate corrective action efforts need to 

be taken if quality improvement projects fall into Priority Zone (2) long-term planning and 

proactive action efforts shall be taken if quality improvement projects fall into Long-Term 

Zone (3) contingency plan need to be formulated to cope with the emergent conditions if 

quality improvement projects fall into Contingency Zone (4) maintain the status quo, i.e. the 

practitioners do not need to pay too much attention if quality improvement projects fall into 

Non-Priority Zone. 

 

The risk information of likelihood and expected loss classified into four quadrants helps 

practitioners to prioritize quality improvement projects when conducting correlated risk 

assessment for any multivariate process or environmental system. Once the quality 

improvement projects are prioritized, the new approach of correlated risk assessment can lead 

to the direction of continuous improvement for any industry. 

 

In terms of industry use, it is unlikely that smaller corporations that have difficulty applying 

FMEA to their operations could benefit from correlated risk analysis. A commitment to SPC 

and its processes is the most conducive environment for this advanced process monitoring. As 

well, industries whose products involve complicated components and assemblies such as 

aerospace, automotive or military contracting have the most to gain from correlated risk 

analysis. On the environmental side, chemical processing industries such as petro refineries, 

steel plants or plastics manufacturing could benefit by verifying that their output of pollutants 

is well within governmental tolerance and regulation.   

 

CONCLUSIONS 
 

Correlated risk assessment with its emphasis on the loss function is an essential tool for 

multi-response quality engineering. In this paper, we propose a new approach of correlated 

risk assessment by linking the multiple process capability indices and loss functions. With the 

multivariate process capability indices, we have shown that the expected quality loss can be 

estimated for both the-nominal-the-best and the-smaller-the-better cases. The two numerical 

examples demonstrate that expected losses can be estimated by various multivariate process 

capability indices and they show the advantage of using our proposed relationship equations. 
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The new multivariate process capability indices properly reflect the actual nonconforming 

rate.  

 

To implement correlated risk assessment in practical applications, existing quality or 

environmental issues must be identified. Then, Key Performance Indicators (KPIs) and their 

multivariate process capability indices are developed to quantify the system. At this point risk 

can be assessed by applying the new relationship equations to evaluate the impact of 

correlated risk on manufacturing processes, or on multiple environmental emissions, such as 

SO2 and NO.  
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